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OVERVIEW OF INFLUENCE 
MAXIMIZATION
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Social Networks

I’ll try 
it

I’ll try 
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I’ll try it

I’ll try 
it I like iPhone

I like iPhone

I’ll try it
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Influence Maximization Problem
• Find a set of highly influential users (seed) in the network
• Posed as an optimization problem by Kempe et. Al.
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Applications
• Political Campaigning – How can I get people to 

vote for me?

• Viral Marketing – Who do I ask to advertise a 
product?
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Information Diffusion

1. An “idea” originates from a user or a set of users in the 

network. These users are called the “Seed” users.

2. Users connected to the Seed are exposed to the idea.

3. The exposed users, if they choose to, further propagate 

the idea to users connected to them.
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Diffusion – A Probabilistic Process

p = ??
ALICE BOB

• Alice posts about something !
• What’s the chance that Alice influences Bob?
• What’s the chance Alice influences Bob’s friends?
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Diffusion Models

• Models of Diffusion – Characterizes the spread of 

information from one user to the next

• Models mirror the diffusion in real world social networks.

• 2 popular models:

• Independent Cascade (IC) Model

• Linear Threshold (LT) Model
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Independent Cascade Model

• The network is modelled as a graph ! = #, % .
• Every edge ((, )) has an associated probability - +(()).
• ( has exactly one chance to convince ) to adopt the idea. 

( succeeds with probability +(()). 
• If successful, ) is considered to be “activated”.
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The Independent Cascade Model – an 
example

t = 0
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The Independent Cascade Model – an 
example

t = 1
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The Independent Cascade Model – an 
example

t = 2
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The Independent Cascade Model – an 
example

t = 3
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Linear Threshold Model

• The network is modelled as a graph ! = #, % .
• Every edge ((, )) has an associated weight - w((, )).
• Each node ) is assigned a random threshold +, ∈ 0,1 . 

• ) is considered to be “activated” if sufficient neighbors of 

) are activated:

• ∑123456 78 7, 5 ≥ :5

15



The Linear Threshold Model – an example
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The Linear Threshold Model – an example
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The Linear Threshold Model – an example
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The Linear Threshold Model – an example
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Influence Function

• ! " - Expected number of users influenced by a set 

of users S

• Under the IC Model, ! " is monotone, submodular

• Submodular:

∀$ ⊂ & ⊆ ( )*+ ) ∉ &:
! $ ∪ ) − ! $ ≥ ! & ∪ ) − !(&)
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Influence Maximization
• Input:	G=(V,E),	a	budget k
• 5 6 - Expected number of users influenced by a set 

of users S
• Objective:

789: 6 ;< =8>? @ AℎCA DCE8D8>?= 5 6

• An	NP-Hard	problem
• Greedy algorithm gives a 0.63-approximate solution

21



What if there are adversaries?

I’ll try 
it

Android is 
better!

Maybe 
Android?

I’ll try 
it I like iPhone

I like iPhone

No! I’ll talk 
about 

Android
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What if there are adversaries?
• Political Campaigning – Can rally opposing candidate 

supporters

• Marketing: Advertisements for products such as 
alcohol, tobacco must not be shown to children

• Can cause a negative reaction to the information 
being spread

• How to approach this problem?
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CIM PROBLEM
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Constrained Influence Maximization(CIM)
• Label users as “Targets” or ”Non-Targets”
• Given:	G=(V,E,	L),	budget k,	threshold	:

• ;<(=) - Expected number of “Target” users 
influenced by S

• ;>(=) - Expected number of “Non-Target” users 
influenced by S

• ;? = = @
;<(=), ;> (=) ≤ :

0, CDℎFGHIJF

• Objective:

KILM = CN JIOF P DℎQD RQSIRIOFJ ;? =
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IM vs. CIM
Influence Maximization Problem

34567689 : ;
<. >. ; ≤ @
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• : ; is a monotone, submodular function.
• Greedy Algorithm gives a 0.63-approximate solution.



IM vs. CIM
Constrained	Influence	Maximization Problem

789:;:<= >? @

A. C. >D @ ≤ F

@ ≤ G
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• >? @ , >D(@) are monotone, submodular functions.
• Maximize under a submodular constraint and a 

cardinality constraint !



IM vs. CIM

IM Problem

• NP-Hard

• Submodular Maximization

• Cardinality Constraint

• Greedy algorithm gives a 
0.63-approximate solution.

CIM Problem

• NP-Hard

• Submodular Maximization

• Submodular Constraint

• Cardinality Constraint
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Theoretical Challenges of CIM
• Theorem: For every 0≤ " ≤ 1, if there is a 

polynomial time c-approximation algorithm for the 
CIM problem under the IC model, then every 
problem in NP can be solved in Ο &(()* +)- time,  
for some k≥ 1.

Obtaining a constant factor approximation algorithm is 
quasi NP-hard!
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NATURAL GREEDY ALGORITHM
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Natural Greedy Algorithm

Start with an empty Set

Find the best vertex ! that 
when added, the set influences 

at most " Non Targets

Repeat until a set of size # is 
obtained
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Theoretical Analysis of Greedy

!"# $ ≥ 0.63 *+, − .//01023 4566

Theorem:

Runtime: Ο(9 × ; × ,0<3 1=93> 15 ?5<@A13 !)

The Greedy solution has an approximation guarantee that 
depends on an additive error!
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Theoretical Analysis of Greedy

!"#$,& ≤ ()& *∗ ∪ *-
!"#$,& ≤ (& *- + /

0∈2∗
345627( 9 , 2 ;)

!"#$,& ≤ (& *- + = ×()& *-?@A − = ×(& *-
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Proof Idea:
Let *∗ be the set that has the optimum value !"#$,&.
345627( 9 , ;)– The gain achieved by adding 9 to *- such that 
at most ; Non-Targets are influenced.



Theoretical Analysis of Greedy

!"#$,& − (& )*+,
≤ 1 − 1/ (!"#$,&−(& )* ) + 34 )*, 26 − 34()*, 26)

34

34()*, 6) – The maximum gain achieved by adding an element to 
)* such that at most 6 Non-Targets are influenced

(7& )$ ≥ 0.63 !"#$,& − =
*>?

$@,
34 )*, 26 − (&()$)



Theoretical Analysis of Greedy

!
"#$

%&'
()*+, *", 2/ − 123 *%

Additive Loss:

Approximately difference of targets influenced between by 
the greedy solution with threshold / and threshold 2/

Runtime: Ο(6 × 8 × +9:; <=6;> <? @?:AB<; 1)
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Can we improve on Greedy?
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Can we improve on Greedy?
!"##$% = '
() ' = 9
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Can we improve on Greedy?
!"##$% = ', %
)* ', % = 11
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Can we improve on Greedy?
!"# = %, '
() %, ' = 12
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MULTIGREEDY ALGORITHM
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MultiGreedy Algorithm
• Keeps track of multiple seed sets

!

"#$ "##%& = 0 %& = 1 "#*%& = +………………

",$%& = 0 ",#%& = 1 … ",*%& = + ………………………..

Proceed till depth - and return the best path from root to leaf
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MultiGreedy Algorithm

• The greedy solution will be in one of the branches

• Theorem:

• Runtime: At least Ο(#$)
• Computationally infeasible!

• Let’s prune the tree!

&'( )*+,-./0012 ≥ &'( ./0012
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Efficient MultiGreedy with IMTree
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/
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Efficient MultiGreedy with IMTree
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ESTIMATING INFLUENCE FUNCTION  
!(#)
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Estimating Influence Function
• Exact computation of !" # , !% # is #P-Hard

• Several techniques exists: Monte Carlo Simulations, 
Forward Influence Sketching, Reverse Influence 
Sketching(RIS)

• We’ve used RIS based estimation.

• Our algorithms can be adapted to different 
methodologies of estimating the influence function
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Reverse Influence Sampling
• Let ! ∼ # be a graph sampled from the random graph 

distribution
• $ % &'()%*'+&'! , = $[∃ 012ℎ (456 % 25 , &' !]
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u v…

• Look	at	transpose	!C!
• $ % &'()%*'+&'! , = $[∃ 012ℎ (456 , 25 % &' !C]

u v…



Random Reverse Reachable Set
• Randomly Select a vertex !.
• Generate a set " by performing a Random Reverse BFS 

starting from !
• # $ = & ×([$ ∩ " ≠ ,]
• This observation was made by Borgs et. al. 
• If sufficient samples are generated, # $ can be 

accurately estimated with high probability.
• To estimate #. $ , #0 $ , we randomly select a Target, 

Non-Target respectively. 
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EXPERIMENTS
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Experiment Results
• Exact computation of !" # , !% # is #P-Hard

• Several techniques exists: Monte Carlo Simulations, 
Forward Influence Sketching, Reverse Influence 
Sketching(RIS)

• We’ve used RIS based estimation.

• Our algorithms can be adapted to different 
methodologies of estimating the influence function
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Datasets

Network Name # Nodes # Edges

NetHept 15 k 62 k

Epinions 75 k 508 k

Amazon 334 k 925 k

DBLP 613 k 1.99 M

Youtube 1.13 M 2.98 M

Pokec 1.63 M 30.62 M
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Budget Vs. Influence

! = 10
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Threshold Vs. Influence

! = 20
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Additive Loss in Natural Greedy
!"# $ ≥ 0.63 *+, − .//01023 4566

7 = 20 54



Our Contributions
• Formulated the Constrained Influence Maximization 

(CIM) Problem
• Provided a theoretical analysis on hardness of CIM
• Studied the Greedy algorithm and proved its 

approximation guarantee involving an additive error
• Designed a novel MultiGreedy algorithm with an 

efficient implementation
• Experimentally evaluated Greedy, MultiGreedy

algorithms on real world datasets
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Future Work

• Can we design an algorithm that can tighten the 

additive error?

• Study how the additive error depends on the 

structure of the graph.
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